
Build Web services with PHP in Eclipse
Using PHP development tools for contract-first development

Skill Level: Intermediate

Nathan A. Good (mail@nathanagood.com)
Senior Information Engineer
Consultant

01 Jul 2008

Learn how to build Web services in PHP using the PHP Development Tools (PDT)
plug-in in Eclipse in three easy steps. First, become familiar with the PDT project,
and learn how to create and deploy useful PHP projects. Second, learn the
philosophy behind contract-first development. Finally, get an informative overview of
the basic parts that make up a Web Services Description Language (WSDL) file.

Section 1. Before you start

About this tutorial

This tutorial shows how to build Web services in PHP using the PHP Development
Tools (PDT) plug-in. The PDT project was released in its 1.0 release version in
September 2007 and was followed by a V1.0.2 release in January 2008. The PDT
project gives you first-class abilities to edit, debug, and deploy PHP applications in
the Eclipse IDE.

Objectives

This tutorial has three main objectives. The first is to become familiar with the PDT
project and learn how to create and deploy useful PHP projects. The second is to

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 26

mailto:mail@nathanagood.com
http://www.ibm.com/legal/copytrade.shtml

learn about the philosophy behind contract-first development. Third, this tutorial
serves as an informative overview of the basic parts that make up a Web Services
Description Language (WSDL) file.

Prerequisites

You should have experience with PHP development.

System requirements

To get the most out of this tutorial, you need to install Eclipse and the PDT plug-in.
You must also install the Eclipse Web Standard Tools (WST) subproject.

Note: If you installed the Java™ 2 Platform, Enterprise Edition (J2EE) bundle of
Eclipse, you already have WST.

To follow the examples, you need Eclipse and one of the operating systems that
Eclipse supports — Mac OS X, Microsoft® Windows®, or Linux®. You also need a
Java Runtime Environment (JRE) — at least JRE for Java 5 is recommended.

Section 2. PDT overview

The PDT project gives you the ability to do PHP development using the Eclipse IDE.
It includes many features of the Java editing environment, including syntax
highlighting, code templating, perspectives, and file and project wizards.

Install PDT

To install PDT, make sure you have the latest version of Eclipse. Use the built-in
software updater to update PDT from the update site. PDT requires the WST
subproject, so install WST first if you don't already have it. If you downloaded and
installed the J2EE bundle of Eclipse, you already have WST. If you downloaded the
Java-only bundle of Eclipse, you must install WST from the Eclipse discovery site.

Figure 1. Installing WST from the Eclipse discovery site

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 2 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.eclipse.org/
http://download.eclipse.org/tools/pdt/downloads/
http://download.eclipse.org/webtools/downloads/
http://www.ibm.com/legal/copytrade.shtml

Set up PDT

After installing PDT, there are a couple things you might want to set up, especially if
you're using PDT and Eclipse on a computer on which you've already been doing
some PHP development. The first configuration is the path to the PHP executable.
To set this path, open the Preferences window, and in the left pane, expand PHP,
then click PHP Executables. In the right pane, you'll see where you can type or
browse to the path of your PHP executable file.

Figure 2. Setting up the PHP interpreter

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 26

http://www.ibm.com/legal/copytrade.shtml

Under PHP in the left pane, click PHP Interpreter, then, specify the version of PHP
you're using. The default is PHP V5.

To access the PHP editor, under PHP in the left pane, expand Editor. The PHP
editor that comes with PDT includes many features of the Java editor, including
syntax highlighting, formatting, code completion, and code templates.

The PHP Functions tab

The PHP Functions tab shows the common PHP functions and classes available in
your library path. You can search for functions in the list by starting to type in the
search box, as shown in Figure 3. Double-click the name on the PHP Functions tab
to insert the name into the editor at the current cursor position. You can also use
code completion (Ctrl+Space) when typing in the editor to pick from a list of
matching functions or templates and insert them.

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 4 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 3. Searching for PHP functions

The PHP Project tab

The PHP Project tab provides a PHP-centric view of your PHP project by listing the
contents of your project split into object types. You see any classes you have
defined in your project under Classes and any functions under Functions.
Double-click the item on the PHP Project tab to automatically navigate to the item in
the editor in which it's found. Figure 4 shows an example of the PHP Project tab
with the classes and functions discussed later.

Figure 4. The PHP Project tab

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 26

http://www.ibm.com/legal/copytrade.shtml

The PHP Explorer

The PHP Explorer shows a list of the projects and files in your workspace. It's
consistent with the other project explorers, such as the Java Explorer.

Section 3. Building a service contract

WSDL overview

A WSDL file is an XML file that describes one or more Web services. The
description includes everything from the methods, or operations, available in the
service to the schema for the messages that form the inputs and outputs of the
operations.

If you're familiar with WSDL files or already have one that you want to use and don't
care how they work, you can safely skip this section and move on to "Alternative:
Import a WSDL file." But if you're new to WSDL files or have used them before, but
would like a refresher, this section will be very helpful.

The ability to visually build WSDL files and XML Schema Definition (XSD) files in
Eclipse should be a great help when building WSDL files in Eclipse. If you'd like, you
can always switch the WSDL editor to Source mode to edit the source yourself. The
WSDL file includes four major parts, which are described at a high level below and

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 6 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

explored in greater detail in the rest of this section.

types
This section of the WSDL file covers the types used in the Web service request
and response messages.

message
This contains the messages sent to and received from the Web service. In the
visual Eclipse editor, they are shown as the input and output of the Web
service operation.

portType
This lists the operations the Web service exposes.

binding
This includes the communication protocols the Web service uses.

service
This describes the service or services exposed.

The types element

The types element can contain information about the types used in the SOAP
messages. The types are conveniently described in XML schema, and you can
import other types. The Eclipse editor works well with both. One advantage of using
external schemas is that you can reuse complex types that have already been
defined. In contrast, an advantage of using inline (that is, inside the WSDL) schema
is that your WSDL file contains everything that needs to be known about the Web
service.

Note: To keep things simple, this tutorial focuses on defining types in inline schema.

The message element

The message element defines the messages sent in and received from the
operations. If you think of a Web service operation as being a method in PHP code,
the message element describes the parameters sent into the method and the return
type that the method returns.

The portType element

The portType element describes the operations a Web service exposes. If you
think of a Web service, again, as a PHP class, the portType element would be
explaining the public methods the PHP class exposes.

The binding element

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 26

http://www.ibm.com/legal/copytrade.shtml

The binding element explains how the operations are exposed in terms of which
protocol is used to access them. In most of the examples you find, the SOAP
protocol is used to access Web service operations. However, other protocols may be
used, such as HTTP.

The service element

The service element describes the Web service, allowing you to group similar
operations in a collection of operations that make sense as a service.

Contract-first development

Building or providing a WSDL file first, then writing the code to implement the service
according to the WSDL file (contract) is called contract-first development. Building
the contract before worrying about how you're going to implement it has a few
advantages.

Open implementation
It leaves you free to implement the service however you see fit. As long as you
comply with the contract, it doesn't matter if you build the Web service in the
PHP, Java, Groovy, or any other language.

Concurrent development
If you build the contract first, you can give the contract out to your consumers
so they can start developing clients to call the services. As long as you comply
with the contract you've given to your consumers, you both can build your code
concurrently. If you did bottom-up Web service development, in which you build
the code first, then expose the contract for the service, other people are waiting
for you to finalize your code base.

Proper analysis
Creating the contract first keeps you and your team honest by performing
analysis up front because the analysis leads to the content of the contract. If
you build the Web service from the bottom up, there's a greater likelihood that
your service grows organically, and you could end up with a contract more
specific to your implementation than you might intend.

Section 4. Building the WSDL file visually

Build the file in the WSDL visual editor

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 8 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

When you build a WSDL file visually in the Eclipse WSDL visual editor, it feels
natural, given the visual editor layout, to build the WSDL file starting at the service
element and working backward, defining the types last. The editor first shows you a
UI element that actually corresponds to the service element in the WSDL file.

Figure 5 shows part of the Web service. Because the example is a Web service that
returns the manufacturer's recommended tire sizes given the year, model, and make
of an automobile, call the service myTireService. You can type the new name
directly into the visual editor.

Figure 5. The Web service in the WSDL file

Listing 1 shows the change Eclipse makes for you in the WSDL source.

Listing 1. The WSDL changes to service

<wsdl:service name="myTireService">
<wsdl:port binding="tns:myTireServiceSOAP"

name="myTireService">
<soap:address

location="http://localhost/~nagood/phpws/service.php" />
</wsdl:port>

</wsdl:service>

The Outline tab displays the major parts of the WSDL file. As you click the parts on
the Outline tab, they're highlighted in the WSDL visual editor.

Figure 6. The Outline tab

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 26

http://www.ibm.com/legal/copytrade.shtml

Update the name of the default operation

After changing the name of the service, you can update the name of the default
operation that was created when Eclipse initially built the skeleton WSDL file. Click
NewOperation and start typing the name of the method. The name of the method in
this example is getRecommendedTireSpecs, as shown in Figure 7. The updated
WSDL source is shown in Listing 2.

Figure 7. The operation in the WSDL editor

Listing 2. Updated WSDL source for getRecommendedTireSpecs

<wsdl:portType name="myTireService">
<wsdl:operation name="getRecommendedTireSpecs">

<wsdl:input message="tns:getRecommendedTireSpecsRequest" />
<wsdl:output message="tns:getRecommendedTireSpecsResponse" />

</wsdl:operation>
</wsdl:portType>

The Outline tab is updated along with the visual editor, as shown in Figure 8.

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 10 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 8. The Outline tab after editing the operation

Leave the binding alone for now. It's defined as it should be, and there's no reason
to change it. However, in this example, the types of the request and response will be
augmented from the default type of strings.

Edit request and response types

On the input line of the WSDL visual editor, click the blue arrow next to the
generated request element name getRecommendedTireSpecs. The Eclipse visual
XML schema editor opens for you automatically, allowing you to edit the complex
types for the request and response. The request is shown in Figure 9, with the
elements added for the year, make, and model of the automobile.

Figure 9. The getRecommendedTireSpecs request object

Right-click the type, then click Refactor > Make Anonymous Type Global to be
able to reuse the complex type elsewhere in the WSDL file. A global type is not
necessary for purposes of this example, but it's helpful to see the difference. Listing

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 26

http://www.ibm.com/legal/copytrade.shtml

3 shows the type after it was made into a global type.

Listing 3. After making the type a global type

<!-- ... parts of the WSDL before ... -->
<xsd:element name="recommendedTireSpecsRequest" type="tns:automobileType"></xsd:element>
<xsd:complexType name="automobileType">

<xsd:sequence>
<xsd:element name="year" type="xsd:int"></xsd:element>
<xsd:element name="make" type="xsd:string"></xsd:element>
<xsd:element name="model" type="xsd:string"></xsd:element>

</xsd:sequence>
</xsd:complexType>

Go back to the WSDL editor and click the blue arrow next to the output line. The
schema editor opens once again, this time with the element and anonymous type
displayed. Because the example service returns one or more sets of tire
specifications, each consisting of the speed rating, traction rating, temperature
rating, and dimensions of the tire, the simple string in the return type is not
adequate.

Add the data parts as attributes

This time, instead of adding elements to the complex type, add the different data
parts as attributes. Remove the element that's there, then add attributes for
speedRating, tempRating, tractionRating, width, ratio, and radius.

Figure 10. After adding the attributes

Add another complex type called tireSpecificationsType. This is just a

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 12 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

collection of tireSpecificationType complex types.

Figure 11. The tireSpecificationsType

Now change the recommendedTireSpecsResponse to make it of type
tireSpecifcationsType. When you're done, it looks like Figure 12. Now, you
have all the types you need to use the Web service. The final WSDL file looks like
Listing 4.

Figure 12. The final response

Listing 4. The completed WSDL file

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="urn:myTireService"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="myTireService"
targetNamespace="urn:myTireService">
<wsdl:types>

<xsd:schema targetNamespace="urn:myTireService">
<xsd:element name="recommendedTireSpecsRequest"

type="tns:automobileType">
</xsd:element>
<xsd:element name="recommendedTireSpecsResponse"

type="tns:tireSpecificationsType">
</xsd:element>
<xsd:complexType name="automobileType">

<xsd:sequence>
<xsd:element name="year" type="xsd:int"></xsd:element>
<xsd:element name="make" type="xsd:string"></xsd:element>
<xsd:element name="model" type="xsd:string"></xsd:element>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="tireSpecificationType">
<xsd:attribute name="speedRating" type="xsd:string"></xsd:attribute>
<xsd:attribute name="tempRating" type="xsd:string"></xsd:attribute>
<xsd:attribute name="tractionRating"

type="xsd:string">
</xsd:attribute>
<xsd:attribute name="width" type="xsd:int"></xsd:attribute>
<xsd:attribute name="ratio" type="xsd:int"></xsd:attribute>

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 26

http://www.ibm.com/legal/copytrade.shtml

<xsd:attribute name="radius" type="xsd:int"></xsd:attribute>
</xsd:complexType>

<xsd:complexType name="tireSpecificationsType">
<xsd:sequence>

<xsd:element name="tireSpecification"
type="tns:tireSpecificationType" minOccurs="0"
maxOccurs="unbounded">

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

</wsdl:types>
<wsdl:message name="getRecommendedTireSpecsRequest">

<wsdl:part name="parameters" type="tns:automobileType" />
</wsdl:message>
<wsdl:message name="getRecommendedTireSpecsResponse">

<wsdl:part name="parameters" type='tns:tireSpecificationsType' />
</wsdl:message>
<wsdl:portType name="myTireService">

<wsdl:operation name="getRecommendedTireSpecs">
<wsdl:input message="tns:getRecommendedTireSpecsRequest" />
<wsdl:output message="tns:getRecommendedTireSpecsResponse" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="myTireServiceSOAP" type="tns:myTireService">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="getRecommendedTireSpecs">
<soap:operation

soapAction="urn:myTireService#getRecommendedTireSpecs" />
<wsdl:input>

<soap:body use="literal" namespace="urn:myTireService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</wsdl:input>
<wsdl:output>

<soap:body use="literal" namespace="urn:myTireService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding" />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="myTireService">

<wsdl:port binding="tns:myTireServiceSOAP"
name="myTireService">
<soap:address

location="http://localhost/~nagood/phpws/service.php" />
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

Section 5. Validating the Web service

Alternative: Import a WSDL file
If you don't need to build a WSDL file for your Web service because
you already have one, you can import the WSDL file into Eclipse.
After doing so, you can still validate it or see it visually using the
WSDL visual editor.

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 14 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Validate the Web service in Eclipse

After you're finished with the WSDL file, validate it inside Eclipse to make sure it's a
valid WSDL file. Choose Validate from the context menu of the project in PHP
Explorer to validate the file with Eclipse. As long as the file is valid, you're ready to
start building the PHP Web service.

Section 6. Building the PHP service code

Using SOAP extensions

The SOAP extension in PHP allows you to build SOAP clients and servers in PHP.
To build the SOAP client, you use primarily the SoapClient class in PHP. In
addition to the SoapClient class, there are classes to build SOAP servers
(SoapServer) and classes for dealing with SOAP messages (SoapHeader,
SoapFault, SoapParam, and SoapVar). For more information about these
classes, see the links to the PHP SOAP documentation in Resources.

In V4 of PHP, the SOAP extensions were an optional addition. To use SOAP
extensions, you had to either enable the extensions with the --enable-soap
option or look for precompiled distributions of PHP that already had the SOAP
extension enabled. In PHP V6, the SOAP extension is enabled by default.

SOAP extensions with PHP
If you're unsure whether you have SOAP extensions enabled for
your version of PHP, there are a couple ways to tell. The first is to
write a quick PHP file containing only <?php phpinfo(); ?> and
view it in a browser or execute it from the command line.
Alternatively, you can use the command-line option -m, which
shows the compiled-in modules for PHP.

As long as you have SOAP extensions enabled, you can create a SoapServer
dynamically, without having to worry about serializing your PHP objects to XML or
deserializing them from XML to your PHP classes.

The Web service used in this tutorial demonstrates how to build a PHP Web service
with a slightly more complicated WSDL and class structure over a standard echo or
Hello World service that takes a string and returns a string. To build this service, the

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 26

http://www.ibm.com/legal/copytrade.shtml

PHP code must include some objects that are mapped to the complex types in the
WSDL file by the SOAP extension code.

The supporting classes

In the PHP service code, although you don't have to worry about serializing and
deserializing objects to and from XML, you should build classes that correspond to
the types in the WSDL file. There are projects written in PHP that help with this a bit,
but with only three types in this service, the effort is fairly trivial.

Build the Automobile class

The first class to build in the PHP code is the Automobile class. It actually maps to
the automobileType, but thanks to the ability to specify the mapping while
creating the PHP SoapServer, you don't have to make the names of the classes in
PHP map to the names of the complex types in the WSDL file. This can make the
PHP code look more like PHP code, as it's common to follow Pascal or upper-camel
naming conventions for classes in PHP. In contrast, if you've done some surfing on
the Web, you'll see many examples in which people keep the names of the PHP
classes the same as the complex types in the WSDL file, presumably because it
makes it easier to remember what's associated with what.

The Automobile PHP class is shown in Listing 5. The fields exposed as elements
in the WSDL file are public fields in the class. Note the absence of accessors in the
class.

Listing 5. The Automobile PHP class

class Automobile {
public $year; // int
public $make; // string
public $model; // string

}

Build the TireSpecification class

The second class is the TireSpecification class. In the type definition in the
WSDL file, the fields for speedRating, tempRating, and others are attributes. In
the PHP class, they're still defined as public fields, just like in the Automobile class
in Listing 5.

Listing 6. The TireSpecification class

class TireSpecification {
public $speedRating; // string
public $tempRating; // string

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 16 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

public $tractionRating; // string
public $width; // int
public $ratio; // int
public $radius; // int

}

Listing 7. The WSDL definition for automobileType

<xsd:complexType name="automobileType">
<xsd:sequence>

<xsd:element name="year" type="xsd:int"></xsd:element>
<xsd:element name="make" type="xsd:string"></xsd:element>
<xsd:element name="model" type="xsd:string"></xsd:element>

</xsd:sequence>
</xsd:complexType>

Build the TireSpecificationList class

Finally, the TireSpecificationList class contains one field, which holds an
array of TireSpecification objects. This maps back to the
tireSpecificationsType in the WSDL file and will be the value returned from
the function that handles the Web service.

Listing 8. The TireSpecificationList class

class TireSpecificationList {
public $tireSpecification; // tireSpecificationsType

}

The complex types all have corresponding PHP classes, so the code is nearly
complete. If you look at the PHP Project tab, you will see the list of new classes. All
that's left in the code is to add a class to be the service and some code to tell the
SoapServer how to handle the WSDL.

Build the service class

The service class is a lightweight class that contains the method mapping to the
operation name in the WSDL file. The operation is shown in Listing 9. Note that the
names are the same and that the function takes a single parameter, which will be an
Automobile object.

Listing 9. The WSDL operation

<wsdl:binding name="myTireServiceSOAP" type="tns:myTireService">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getRecommendedTireSpecs">

<soap:operation
soapAction="urn:myTireService#getRecommendedTireSpecs" />

<wsdl:input>
<soap:body use="literal" namespace="urn:myTireService"

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 26

http://www.ibm.com/legal/copytrade.shtml

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</wsdl:input>
<wsdl:output>

<soap:body use="literal" namespace="urn:myTireService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding" />

</wsdl:output>
</wsdl:operation>
</wsdl:binding>

To keep things simple, I hard-coded a couple of tire specifications for my car, a 1993
Nateauto Speedster (OK — that's a really corny name, but I'd rather be accused of
having a poor imagination for marketing than trademark infringement). I made up a
rule that if the car is older than 1994, a smaller tire is among the recommend tire
sizes.

Add the server code

Finally, the server code is listed at the end of your service.php file. The
SoapServer is instantiated with the class map and a couple of options.

Listing 10. The SoapServer code

$server = new SoapServer('myTireService.wsdl',
array('classmap' => $classmap,

'soap_version' => SOAP_1_2,
'uri' => 'urn:myTireService',
'style' => SOAP_RPC,
'use' => SOAP_LITERAL));

$server->setClass('myTireService');
$server->handle();

Table 1 shows the options for creating this code.

Table 1. Options for creating SoapServer
Key name What it does

classmap An associative array that links the complex type
names from the WSDL file to the PHP class
names

soap_version The version of the SOAP specification that
SoapServer supports

uri The Universal Resource Identifier (URI) used as
the namespace for the service (You will see
urn:myTireService in the WSDL file.)

style The style of WSDL method binding used (In this
example, RPC literal is used.)

use The type of binding to use, which can be one of
SOAP_LITERAL ("literal") or SOAP_ENCODED
("encoded")

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 18 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The myTireService class is set so that when the handle() method handles the
post, the getRecommendedTireSpecs() function is called.

Section 7. Deploying the code

Add a builder for your project

Although the PDT tools allow you run PHP scripts and execute PHP Web pages
given a server runtime, neither one helps too much with testing Web services
because you need to post a SOAP request to the Web service and be able to see
the response. So, the goal is to be able to publish the service.php file and
myTireService.wsdl file to a Web location from which you can call them from a test
SOAP client.

You really shouldn't put your workspace under the document root or a folder
published by the Web server because of permissions and security. The best
alternative is to put a builder into Eclipse that publishes your files to the Web
document location of your choice. To add a new builder for your project, click
Properties from the context menu for your project.

In the left pane, click Builders. Click New to add a new builder for your project.

Figure 13. Adding a new builder

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 26

http://www.ibm.com/legal/copytrade.shtml

In the Choose configuration type window, select Program from the list, then click
OK.

Figure 14. The list of available builders

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 20 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Type the name of a builder — for example, ServicePublisher. In the Location field,
type the name of a copy command appropriate for your operating system, like
/bin/cp.

Figure 15. Configuring the new builder to deploy your service

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 26

http://www.ibm.com/legal/copytrade.shtml

Beneath the Arguments field, click Variables, then select the variable called
${project_loc} as the base of your project. Remember that you will have to type
the names of the actual files in this Arguments field. You can't use wildcards like the
asterisk (*) or question mark (?) because these are interpreted by your shell before
being sent to the command line. As far as /bin/cp is concerned, there is no file
called * or ?.

Troubleshooting

Another alternative: REST services
Representational State Transfer (REST) is an architecture or style
of using Web services, not a standard like SOAP. REST Web
services are simple and can use any other standard, like HTTP or
XML. The Internet (basically) is a huge collection of REST services,

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 22 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

where you make the request by supplying a URL to a server and
receive a document as a response. Common technologies, such as
Atom or RSS feeds, are REST services.

As an alternative to using SOAP services, you can build Web
services in PHP. You can use existing PHP and PEAR objects,
such as SimpleXML, XMLReader, and XMLWriter included in PHP
V5 (see Resources).

For troubleshooting steps, a good SOAP client that gives you all the SOAP faults
helps. If your existing SOAP client swallows errors, consider using a different one.
Other useful tools are those like Fiddler (see Resources) or other proxy applications
that trap the messages sent to and from the Web service.

When I built the WSDL file for the first time, I wasn't paying attention and created the
WSDL using document literal. While this is great practice for creating WSDL files, I
had nothing but problems trying to get it to work, even with the PHP SoapServer
class set to use SOAP_DOCUMENT and SOAP_LITERAL. The error that I received
when the WSDL was set up as document literal was:

Procedure 'getRecommendedTireSpecs' not present.

After changing the WSDL to use RPC encoded, I got the error:

Error cannot find parameter.

I was able to make it go away be ridding the automobileType of all but one
element (the year). I finally changed the WSDL to use RPC literal, which is fully
Web Services Interoperability Organization (WS-I)-compliant, as well as allowing me
to use the rich, complex types I had set up.

Section 8. Summary

Creating a WSDL file first, then the service, is doing contract-first development. With
Eclipse, PDT, and WST, you have the tools you need to create the WSDL visually
and easily, then use Eclipse's features to automatically publish your PHP service to
a location.

The PDT project gives you the ability to write PHP code with first-class IDE features.
Using the PHP perspective, you can navigate your PHP project more easily. With
these tools and the built-in support in PHP for SOAP and XML, you can create PHP
Web services with little effort.

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 26

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 24 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• The online Eclipse help has more information about what's new, as well as
additional tips and tricks.

• For more information about SOAP, see the PHP SOAP documentation.

• "XML for PHP developers" provides a great overview of using XML in PHP.

• PHP.net is the central resource for PHP developers.

• Check out the "Recommended PHP reading list."

• Browse all the PHP content on developerWorks.

• Expand your PHP skills by checking out IBM developerWorks' PHP project
resources.

• Using a database with PHP? Check out the Zend Core for IBM, a seamless,
out-of-the-box, easy-to-install PHP development and production environment
that supports IBM DB2 V9.

• Check out the "Recommended Eclipse reading list."

• Browse all the Eclipse content on developerWorks.

• New to Eclipse? Read the developerWorks article "Get started with Eclipse
Platform" to learn its origin and architecture, and how to extend Eclipse with
plug-ins.

• Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

• To listen to interesting interviews and discussions for software developers,
check out developerWorks podcasts.

• Stay current with developerWorks' Technical events and webcasts.

• Watch and learn about IBM and open source technologies and product
functions with the no-cost developerWorks On demand demos.

• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

• Download the Eclipse IDE and install it from the official site.

ibm.com/developerWorks developerWorks®

Build Web services with PHP in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 26

http://help.eclipse.org/help33/index.jsp
http://www.php.net/soap
http://www.ibm.com/developerworks/library/x-xmlphp1.html
http://www.php.net
http://www.ibm.com/developerworks/library/os-php-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=php
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www-306.ibm.com/software/data/info/zendcore/
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.eclipse.org
http://www.ibm.com/legal/copytrade.shtml

• Download the latest builds for the PDT project.

• The PHP site provides information on and functions for SimpleXML,
XMLReader, and XMLWriter.

• Fiddler is the HTTP debugging proxy that works with most Internet browsers.

• Check out the latest Eclipse technology downloads at IBM alphaWorks.

• Download Eclipse Platform and other projects from the Eclipse Foundation.

• Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,
Tivoli®, and WebSphere®.

• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

• The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

• The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

• Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

Nathan A. Good
Nathan Good lives in the Twin Cities area of Minnesota. When he isn't writing
software, he enjoys building PCs and servers, reading about and working with new
technologies, and trying to get all his friends to make the move to open source
software. When he's not at a computer (which he admits isn't often), he spends time
with his family, at his church, and at the movies. Visit his Web site.

developerWorks® ibm.com/developerWorks

Build Web services with PHP in Eclipse
Page 26 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://download.eclipse.org/tools/pdt/downloads/
http://us2.php.net/manual/en/book.simplexml.php
http://us2.php.net/manual/en/book.xmlreader.php
http://us2.php.net/manual/en/book.xmlwriter.php
http://www.fiddlertool.com/fiddler/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.eclipse.org/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs
http://www.nathanagood.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	PDT overview
	Install PDT
	Set up PDT
	The PHP Functions tab

	Building a service contract
	WSDL overview
	Contract-first development

	Building the WSDL file visually
	Build the file in the WSDL visual editor
	Update the name of the default operation
	Edit request and response types
	Add the data parts as attributes

	Validating the Web service
	Validate the Web service in Eclipse

	Building the PHP service code
	Using SOAP extensions
	The supporting classes

	Deploying the code
	Add a builder for your project
	Troubleshooting

	Summary
	Resources
	About the author

